Toward Moderate Overparameterization: Global Convergence Guarantees for Training Shallow Neural Networks
Many modern neural network architectures are trained in an overparameterized regime where the parameters of the model exceed the size of the training dataset. Sufficiently overparameterized neural network architectures in principle have the capacity to fit any set of labels including random noise. However, given the highly nonconvex nature of the training landscape it is not clear what level and kind of overparameterization is required for first order methods to converge to a global optima that perfectly interpolate any labels.