Continuous-Time Distributed Filtering With Sensing and Communication Constraints
Distributed filtering is crucial in many applications such as localization, radar, autonomy, and environmental monitoring. The aim of distributed filtering is to infer time-varying unknown states using data obtained via sensing and communication in a network. This paper analyzes continuous-time distributed filtering with sensing and communication constraints. In particular, the paper considers a building-block system of two nodes, where each node is tasked with inferring a time-varying unknown state.