Modern networks rely on a variety of technologies to sense the environment for static or locomotive objects, in particular their shapes, distances, directions, or velocities. Sensing is a key feature in these networks and enables for example autonomous driving, motion sensing in health applications, target detection in smart cities, or optimal beam selections in millimeter wave communication. Besides these exciting new applications, sensing remains an important feature also for traditional applications such as temperature monitoring, or earthquake or fire detection, where new technologies are exploited including continuous feature monitoring over the entire range of an optical fiber network. The purpose of this special issue is to report on new exciting applications of sensing in modern networks, novel sensing architectures, innovative signal processing mechanisms related to sensing, as well as new results on the fundamental performance limits (resolution, sample complexity, robustness) of sensing systems. Particular focus will be on joint systems that integrate sensing with other tasks, for example communication, information retrieval (estimation, feature extraction, localization), super-resolution.
Read the call for papers.
Deadline: Extended to October 10, 2022 (originally July 15, 2022)