Low-capacity scenarios have become increasingly important in the technology of the Internet of Things (IoT) and the next generation of wireless networks. Such scenarios require efficient and reliable transmission over channels with an extremely small capacity. Within these constraints, the state-of-the-art coding techniques may not be directly applicable. Moreover, the prior work on the finite-length analysis of optimal channel coding provides inaccurate predictions of the limits in the low-capacity regime. In this paper, we study channel coding at low capacity from two perspectives: fundamental limits at finite length and code constructions. We first specify what a low-capacity regime means. We then characterize finite-length fundamental limits of channel coding in the low-capacity regime for various types of channels, including binary erasure channels (BECs), binary symmetric channels (BSCs), and additive white Gaussian noise (AWGN) channels. From the code construction perspective, we characterize the optimal number of repetitions for transmission over binary memoryless symmetric (BMS) channels, in terms of the code blocklength and the underlying channel capacity, such that the capacity loss due to the repetition is negligible. Furthermore, it is shown that capacity-achieving polar codes naturally adopt the aforementioned optimal number of repetitions.